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Notations 

u = u( r ,  S) -1 the r-component of the velocity a f te r  the shock 

v = v(r ,  S) =: the 8-component of the velocity a f te r  the shock 
P = the p re s su re  

P = the density 

l4J = the s t r eam fu.nction 

(r, e )  = the spherical  coordinates on the plane passing the 
ax is  of rotational symmetry  

S 
2 8  
'z = s in  

C 

p, and p ,  

= the maximum velocity of the flow 

a r e  respectively the stagnation p r e s s u r e  and 

density 

1 p* z - P 
J-- ' P O  

- - 
u = u / c ,  v = v l c  1 p* z - P 

J-- ' P O  

- - 
u = u / c ,  v = v l c  

P * =  P / p o  and L =  

The equation of Shock Wave: 
go [ 1+(G1-2€)s+(GZ-2€G1)S 2 -I- . . . . I  

2 r = g(s )  = g + g l s + g  s .+.... = 
1--2 € S  

0 2 

go = 1 +  A 

= 4 + z  .- 2 + ~ ,  G2 = - g2 

go 

g1 

g 0  G l = -  - 

M =: the f r e e  s t r eam Mach nl_!m'ber 

iii 



y = the rat io  of specific heats  

NI1 = y 

cy, 6, 6, v,  and X a r e  pa rame te r s  occurr ing in  the coefficients of 

Taylor expansion of flow quantit ies in  the neighborhood 

of the stagnation point. 

The rad ius  of the spherical  body is normalized as unity. 

iv 
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. __ I. Introduction 

The present  repor t  is the continuation of Report  I. The formu- 

The method of lation of the problem has  been given the re  (pp. 1-15). 

attack (for the general  body problem) wi l l  be modified as follows: 

( i )  To  find exact re la t ions between the p a r a m e t e r s  (in the sense  
that the r e su l t s  do not depend on the number of t e r m s  taken in the ex- 

pansion). 
su l t s  a r e  obtained: 

Using the same  notations as in Report  I, the following r e -  

CY 
1 - - -  

P 4 

-1 1 3 1 5  
32 2 2 CY Z - Q - - Q  - -  6 

cu+q = 
1 + P  
211 

4N3’2 p g,” (1-Np) 

besides  those which and a fourth relation involving A ,  ~ , go g1 8 2  

go 
appear  above. 

proper ty  on a s t r e a m  line and the Bernoulli’s equation involving the 

s t r e a m  function +. 

The r e su l t s  a r e  obtained by utilizing the isentropic  

( 2 )  The final solution of expressing all the p a r a m e t e r s  in t e r m s  
of M and 1-1 is obtained by the matching conditions of u ana  v fr-orxi 

the body to  the shock by the power s e r i e s  expansions in a t ransformed 

var iable .  The expansion has  to  converge fast enough in o r d e r  t o  yield 

accu ra t e  resu l t s .  Because of this consideration, we have modified our  
pr0cedur.e in iiie following two ways: 

-1- 
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(a) Apply the t ransformation 

r* = log r 

. 

remove the possible singularity due to  the coordinates at r = o and 

reduce the body equation t o  r$ = 0. 

(b) For high f r e e - s t r e a m  Mach numbers, the convergence is 
seen to  be quite good, while for  low supersonic  Mach numbers  < 2, 
the convergence is worse (the s e r i e s  becomes oscillating; namely, 

the t e r m s  are alternatively positive and negative, while the i r  magni- 

tudes become the same o r d e r  with the preceding term).. Fortunately, 

in the present  case, when f r e e  s t r eam Mach number is down t o  1.2, 

the detached shock distance is 0. 8, the power s e r i e s  method still 
yields quite good r e su l t s  providing a t ransformation of independent 

var iables  is applied. In our  calculation, we use  

y - l  2 1 where y = Np = ~ Q- - 
y U l  y + 1  M2 

A =  2 ~ 6 = 2 ~ J l +  - 2 - 1 
y - 1  M2 

This transformation is motivated by the requi rement  that  no 

change of variable is necessa ry  at high Mach number M and a singu- 
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I 

I 

. l a r i ty  inside the body near  the boundary may occur  a t  low supersonic 

Mach number M. 
The fundamental equations a r e  

I 

I 
This  is seen from the following considerations: 

(1 ) -2 -2 [l-u - v  s(1-s)]Lr* u U r > $  +vvss(l-s)-v s(1-s)=-- -2 -- -- I l+P 

I - - -2 -2 [ 1 - u  -v s(1-s)]Ls (11) u Vr$ + v vs s(1-s)+ v (z - s ) + u  v = - - -2 1 -- -- 
1 + P  

I 

1-I.L (111) 2u+v( l -2s)+ur*+vss( l - s )+-  [ULr*+Vs(l-s)Ls] = 0 
- -  

1 4 / J  

2 8  where r:X = log r ,  s = s in  - 2 

Note that the logarithmic pressure  L = log - 
nation p r e s s u r e  and the velocity components 
are different f rom the notations u s e d  i n  Report  I. 

where po is the stag- 
Po - V u = u / c  and 7 = -/s(l-s) 

C 

When s = o , the equations ( I )  and ( 111) yield 

The singularity wi l l  likely occur when % = &fl 
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I 

2 7-1 2 1 
+ -  - 2 I < P  Since, fo r  M > 1 ,  N p  = p [T 
Y +l M 

hence J N p  ‘ Jp  . 

Therefore  the singularit ies may occur a t  a point inside the body as 

well as beyond the shock. 
any expansion at the body when 8 = 0, th i s  singularity should be t r ans -  

formed into a point far away from the body r 

In o rde r  to improve the convergence of 

* 
= 0. 
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( 3 )  The equation of shock. wave in the original s e r i e s  form will 
be only valid in  the neighborhood of the nose. In order  to  

calculate the flow field in the large,  we wr i te  the equation 

of shock wave a s  

r = g ( s )  = 1 [ 1 + ( G l - 2 ~ ) ~ + ( G 2 - 2 ~ G 1 ) ~  2 +.e] 

The denominator is introduced to  insure that the surface of the 

shock will tend to  the Mach cone at infinity. 

show, this  expression converges quickly and yields the location of 

sonic point on the shock quite accurately even i f  only go and G ,  are 

taken into consideration. 
conic section. :k 

A s  the numerical  r e su l t s  

This  i s  not a s u r p r i s e  as such will be a 

* See a l so  Ref. 1. 
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11. Presentation of Analytical Results 
- 

The Match conditions fo r  the velocity components u and v a r e  

applied (as it will  be discussed in detail in  V. ), we find the following 
resul ts :  

(1) 

(1 1 (1.5-2.51-0 y - 1. 927 + 3 . 9 1 4 ~  x = G1-2 = 
1-2l . l  

This  formula compares  with Van Dyke's numerical  r e su l t s  in excel- 

lent agreement. F r o m  his  definition of shock, we have the following 
relation 

R b +  A 
- x  = 2 [  I 

RS 

where Rb = the radius  of curvature of the body, 

Rs = the radius  of curvature of the shock (at s = 0) 

A = the detached shock distance 

(2 1 
The detached shock distance is given by the equation: 

9 A:: 2 

9 -  2 

2 A::: = y +  
Y Y 4 - 2  

3 i f  the higher o rde r  t e r m s  in A::: a r e  neglected, where 
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G $ =  - x + y  ( 2 + x )  

X =  G , - 2  
and 

which is given by (1) 

The equation is solved by successive approximation. The r e -  

s u l t  of shock distance (Fig. 1) is obtained f rom the f i r s t  approximation 

where A: = ~ Y and the quantity A:: in Q is a l so  substituted by 
4 - 2  Y A::: . 

0 

(3) The Velocity Gradient along the Body a t  the Stagnation. 

The equation for  the determination of A = f i 2  CY is 

A::: 

(N-1) A::: + - A 

+ Q 
A b =  A+(- - 1 )  

1 

where  
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X =  G - 2 ,  (#I = -x+y ( 2 + x )  1 

The f i r s t  approximation is given by neglecting the t e r m  A::: 2 .  . 

A :::A QA:: A = $  t - 
A (N- 1 )A::: -t 1 1 +A ( N - 1  )A::: 

F o r  the determination of the sonic point and the velocity field 

i n  the large, (for t.he latter,  Jacobi's expansion is used)  see Section 

VI. 
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111. The Calculation of the Entropy as a Function of 4 Based on the 

Shock Shape. 

F r o m  the equation of continuity, one may define the s t r eam 
function as follows: 

(7 1 $ (rI, 8 ’ ) = 2 a [ S r p r v S i n 8 d r - S , p r  2 u S i n O d O ]  

I 

Where r is a path in  the fluid from (1, 0 )  to  (r’, 0 ) ) .  
factor  2 T is added so  that the + has  the interpretation of m a s s  flow 
f o r  the case  of rotational symmetry.  

The constant 

On the shock 

r = g  + g l S + g 2 S  2 + . . . 
0 

(8) 
2 

$ = p l U r  ( r S i n e )  2 = 4 7 r p l u g O  2 [  s + ( 2 G 1 - 1 )  S 

3 
I + ( 2 G 2 + G 1 2  - 2 G ) s  +. . . . I  

where p1 = the f r e e  s t r eam density 
U = the f r ee  s t r eam velocity 

Gi = g i /go ,  i = 1, 2, . . . . 
Thus, on the shock, 

I where 
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Define the dimensionless entropy as 

On the shock wave, both p* and p* a r e  known functions of S ,  

i f  one a s sumes  the shock shape r = g(s) o r  

>k 2 
r = log g ( s )  = h ( s )  = A + h l  s +  h a s  + . . . 

where 

h l  = G 1  

G12 
h2 = G2 - - 2 

Consequently, on the shock, log C (+) can be computed as a power * series of s: 
* 1-Y :k .I. Tp 

log c(+) = log &i = log ( %  t log p 
P P 

- 2 -2  1 
- l og [  1-u - v s(1-s) ] 2 1-Np 

- 2P 
+ log C 1 - 2 ~  t 2 h ' s  (1-s) ]  1-c1 

hk 
The condition of L on the shock is given on p. 14 i n  Report I .  

2 2  g c o s 8  +$ Sine ( Y - 1 ) P  ,u - -  
L =  log { [ 1-u -v s(1-s ) ]  1 

2 YPo C * v q m  de - u g  
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, By means  of (9), i t  is expressed  in t e r m s  of $ : 
~ 

2 
log C ( 4 )  AI$ A2$ t . . . 

1 2 2 where 
(1+P ) P  x ( 1-y) A1 = - 

Y ( 1 - d  Q - y d  

x = G1-2, y = NP 

F r o m  ( l l ) ,  and (9)  and the power s e r i e s  expansion of u and 7 
on the shock A2  can be computed i n  t e r m s  of g 0' 

well as  
G1, and G2 as 

2 1 - Y-1 
/ 1 - -  y + l  and N =  1 +  __ __ 

7-1 M2 

Finally, one may r ewr i t e  ( 7 )  as 

Where r is a curve connecting ( 0 ,  0 )  t o  (R, s) in  the R s  plane; 

R = r-1, s = s in  - u = -  and v = 1 /Js(l-s)  are functions of 
R and s ;  

2 e .  - U 

2 '  C C 

1 K = -2 
0 

P 
" 0  

1 1 
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IV. Derivation of the Exact Relations 

We shall now utilize the fact that the entropy is constant along 

the s t ream line. Thus we have 

log p::: - y log p: : :  = log c (4) =XIT + x2 T2 + . . . .  

On the other hand, Bernoulli 's  equation in  the dimensionless f o r m  
along a s t ream line is 

.t, 

P "' 

- _  2 2  log $:: - log p : : : =  log [ 1- u - v s(1-s)]  o r  

w1ier.e L = log p'::. 

Now, consider (19) f o r  smal l  values  of R = r -1  (namely, in 

the neighborhood of the body), the flow quant i t ies  L, u ,  v can be 
expanded in power  s e r i e s  of R: 

_ _  

1 2 L = Lo(s) + L1(s) R +z L2(s) R + . . . . 
1 2 u u ~ ( s )  R + -  u ( s )  R + .  . . 2 2  

- 

- 1 2 v = v ( s )  + v , ( s )R  t Z  v 2 ( s ) R  + . . . 
0 
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, By means of (17) and (91, the coefficients of ‘lCl can be explicitly 
expressed  i n  t e r m s  of these coefficients. Differentiating (1 9) with 
respect  to  R and comparing the coefficient of R power, the f i r s t  

t e r m  yield the relation 

1 l + l  s(1-s) 2 V0Vl 
1- vo2s( l -s)  L1 + 2E.( 

1-p 
2 2 c (  

(2 0 )  
= - k I . ( X  s(1-s) [ 1-s(1-s)vo ] 

2I.( 1 vo -I-( 
go l’2p [ 1-N&- 

F r o m  the fundamental equation (1) (Report I, p. 2 )  

1 + p  s ( l - s ) v o  2 

I-( 1-v s(1-s) 
2 

L1(s) = ___ 

0 

Thus, (20) and (21) give an exact relation 

1-+P 
vl(s)  + vo(s) = q [ 1-vo 2 s (1-s) 3 21j 

which should be satisfied fo r  all values of s, where 

In particular,  when s = 0, it yields 

2 The coefficient of s yields an  identity, while that of s gives: 



CY 1 3  1 5  
32 2 - 6  = -  t Z "  + -  CY 

- 14- 

Compare the coefficient of R2 in  (19), we have the relation: 

2 2 2 
1 lu/J s(1-s) u1 + V l 2 + V 0 V 2 )  + s (1-s) 2 V 0 2 V l 2  ] 
2 L 2 + 2 j T [  F (3-EJ F2 

- A2Ko 2 p ::2 vo2s2(1-s)  2 1  - 

F2 

2 where F = 1 - v0 S ( l - S ) ,  

L = e ,  

A1 is given by (131, KO by (151, and A2 can be explicitly express -  

Since (26)  holds for  all s (small  enough), the coefficients yield 

ed in t e r m s  of g G1, G2, N and p .  
0' 

successively. an identity, 

(27 )  p = -  1 
4 

and a relation involving A ,  

mentioned relation is not used in  the present  Report. 

n2 and o thers  a l ready  appeared. The las t  

These exact relations (24), (25) and (26) a r e  not found before. 
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* V. Matchine Conditions 

The fundamental equations (l), (11) , and (111) in  the Introduction 

I, yield all the coefficients of u, 7, and L as power ser ies* of R 
in  t e r m s  of v (s) and its derivatives in  s. The shock conditions 

yield all physical var iables  3, 7 and L in t e r m s  of g(s) on the shock. 

In o rde r  to  determine v and g, i t  is necessa ry  to  re la te  them by the 
matching conditions of u and 

lent of the integration of the differential equation) f rom the body to  the 

shock up to  some powers of s besides those relations obtained f rom 

the constancy of entropy along a s t ream line. 

log ( 1 + A )  = A') and G1 (or x ) are  to  be determined, three matching 
c o n d i t i o n s  a r e  t a k e n  f o r  b o t h  u (r , o )  a n d v  (r , 0 )  and 

a l so  for  - a u  at r = log (1 + A) = A?., namely 

0 

0 
from some expansion (which is equiva- 

In the present  report ,  i f  only cy , /3 , 6, r ) ,  go (or A ,  o r  
.I, 

.I. - *  - .,. 
.I. .e. 
.I- 

- 

a s  

a. 1 .L 2 

2 (U2, 0 1, 0 
+ u  A'+- +u ) A*' = u  

0 , o  l , o  

3 ::: 3 Q A3 7 1 - - A +  Q] A' ( 2 8 4  5 
6 + [- 12 (1 -P I  - 

.b 2 Thus 

Y 
- y = -AA +(- A -  7)  A 2 

where y = N P  

cf. the Appendix 



-16- 

x = G 1 - 2  

Similarly, f rom that f o r  7 ,  we have 

- 0  ( 0 )  - 
( 0 )  

5L9/=o = u  and u (s) = u ( h ( s ) ,  s). 1 where d s  

The subscript  indicates  the par t ia l  derivative. 

Consequently, we have 

2 2 -2 x (2 + x )  + 2y ( l+x)  + p  [ 2xy + x y + x  ] 

2 
- _ -  A3A" ( l - p ) + [  Q+--- P? , J + ~  1 A 2 - 3+p (Q-A)] AJ' 

3 
(30)  

2 Y  Y Y 

The unknowns t o  be solved in  (28a), (29) and  (30) are  A'" = log (l+A), 

x = G 1 -2, and A = J N ~ c Y .  
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From (28a) and (29), one der ives  

2 * (31) 5 A+ E Q ) A  
3 )k 1-1.( A 

2 6 Y  + 1 2  ( $ - i ) - x  = % A  + ( - -  - 
A 4c 

2 8 
This  exprgssion is exact up to  the o r d e r  of A . Hence, when 

- .I. y .I. 

the t e r m s  of A"* 

following relation involving only A and x; 

a r e  neglected, a s  compared  to  A " ,  one obtains the 
.I. 

.L 

Since the numerical  value of A". = log ( 1  + A ) t u rns  out t o  be 6 0. 6 

f o r  M > 1.2, the equation (32) should be a good relation for a consid- 

e rab le  range of values  of M (provided that i t  is not too close to  1). 

With x to  be determined l a t e r  as  functions of y and 1-1 o r  M and 

y, the detached shock wave distance A calculated f rom (32) is in 
excellent agreement  with existing theoret ical  r e su l t s  
experimental  r e su l t s  (' ') as  indicated in  the Figure 1. 

as  we l l  as  

The equation (29) y i e l d s  A as  a function of x, for  which 

the approximation solution of x of (30) is obtained by solving x i n  

t e r m s  of P for  var ious  values of y o r  M (y = 1-1 and y = H ) .  This  
yields  

1 

(1. 5 - 2. 5 p  ) y - 1.927 + 3 . 9 1 4 ~  x =  
1 - 2 P  

(33) 

The comparison with Van Dyke's r e su l t  gives  quite good agreement  

fo r  all M >/ 1. 2. 

ment ( with a few p e r  cents )  except when M < I ,  8, the discrepency 

becomes  l a rge r .  

A s  expected, the resu l t  in A is a l so  in  good ag ree -  

This  is not a su rp r i se  as  all the expansions become 
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I alternative positive and negative while the A and the coefficients of . 
i t s  powers increase as M decreases  (in the range 1 . 2  4 M < 2).  This  

means the convergence of the power s e r i e s  becomes worse.  The r e a s -  

on for  this is due to the singularity of the solution, which occurs  in- 

side the body and gets c loser  to  i t s  boundary when M decreases .  
F o r  this  reason, as mentioned in the introduction, the transformation 

is applied. 

ation that it reduces to  identity transformation while M = + 00 or  
N = 1, and it t r ans fo rms  a point close to the boundary inside the body 
into infinity for  low supersonic M. The modified equation fo r  A is 
given a s  in the introduction. While the modifications in x and A 

a r e  small, we still use the expressions as obtained above. 

The transformation is constructed based on the consider- 

I 

The resul ts  thus obtained for  A is used for  

(the velocity gradient along the sphere at the stagnation) as a function 

of M. A s  shown in Figure 3, the agreement  with the experimental  

The p res su re  distribution on the body is values 

shown in Fig. 2 (for y = 1. 4). 

is very good. ( 1  1 )  
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* VI, Discussion of the Results and Conclusions. (The Sonic Point 

and the Sonic Line)  

A s  a fur ther  t e s t  for  the present theory the sonic point and the 

Mach contour such as the sonic line a r e  computed. * 
Since at the sonic point on the body r = 0, the directionless 

rl, 

velocity VI'. = v d- is a known value fl, thus one has  the fol- 

lowing relation for  the determination of the sonic point o r  for the 
values of c = J- = sin 6: 

1 2 A 2  A4 4 
) o  = A + A a  -A(-+-+- 2 

CY 2 2 N 2  

when y =  N p ,  A =  f i 2  CY 

o r  

+ -  1 2A2 3 

A N 

For  M b 1 . 2 ,  3 < : 5 :  Thus the solution f o r  c in (35a) can be A 
expressed  a s  the power s e r i e s  of dF A ; i. e. ,  

(35) 

where k = 4 7  - . The r e su l t s  thus obtained a r e  plotted fo r  various A 
Mach numbers  a s  in Figure 4, which is again in good agreement of 

the experiment. (1 1) 

Finally, fo r  the velocity field as a whole, we shall  use the data 

thus  obtained in conjunction of the use of Jacobi 's  expansion. F o r  

instance, a s  i t  is checked above that the velocity component v Js(1-s) 

alone b +he I--- body is given, at lea-st, accurately up to the sonic point as 
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a power se r i e s  of s with the parameter  M and p ,  we may utilize 

the fact that 7 is a lso  known at the sonic point s= so to  construct 

the Jacobi's expansion of 7. This par t ia l  sum of Jacobi 's  expansion 

is expected to give good approximation fo r  s beyond the sonic point 

S Thus, at r = 0, 
* 

0 '  

c 3 2 -2  1 A A 2  A 4  

J 
0 

l + u  Since the exact relation 

holds, this  gives v1 immediately on any point on the body. 

a fixed value of s, 

on the shock as given by: 

Now, for  

utilizing the data of v and Vr* at r*'*= 1, and 7 
4. 

4. -,* 

h'(s)  (1-2s) 1-/J h' 
JNv = ( I +  1.1) - (1-p) 2 + -  1-2s  +2h ' s ( l - s )  

l + h '  s(1-s) M2 

2 1-h' ~ ( 1 - s )  
2 1 + h'  S ( 1 - S )  

+ (1-1.1) 

- * 
One can form the Jacobi expansion for  v in r . 

Similarly, with the data of u , (i. e., u1 and u2)  on the body and 
that of 5 on the shock given by 

I * See s o r  (12) on Report  I. 
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1-h' 2 S(1-S) 

2 
l + p  ( 1 - 2 s )  +&(1-2s) f i i i = - T  

2 l + h '  S(1-S) 

1 1 

M 
- ( I -  p )  - 2 1-2s t2h1s(=  

2h1s(1 - S)  

l+h' S(1-S) 

_- + (1+ p )  2 

.L 

The Jacobi 's  expansion for  u in rr can be formed. 
velocity field which is accurate  enough in a region beyond the subsonic 

region. 

This  will  give the 

A s  f o r  the sonic line, its equation is given by 

.L 

Now, if one expres ses  s as function of r*'. fo r  (42): 

* , \  the data of s ( o )  and si(oj ,  si i \o) are curr~pi-ited from (12)  E= is s 

at rT= h(so)  f rom the shock conditions and (42). The sonic line can 

then be plotted by Jacobi 's  expansions of s in r . The resu l t  is in- 

dicated in  Figure 5. 

.L 

.I. 1% 

.Ir I. 

The slope is very accurate  provided so is because of the exact re- 

lation. 



-22-  

In conclusion, the present  theory has  established exact re la t ions ' 

between the derivatives of flow velocity components and the shock 

shape parameters .  Additional matching conditions on velocity com- 
ponents yield all pa rame te r s  explicitly i n  t e r m s  of 

2 1 and P =- Y - 1  . The matching conditions yield 
7- Y +  

N = l +  

excellent resul ts  for  all M >, 1 . 2  i f  the power s e r i e s  of flow velocity 
components a r e  expressed  in an appropriately t ransformed variable 

5 instead of r*'*, which is motivated by the singularity inside the body 
(by analytic extension of the solution). 
s t ructed by the use of Jacobi 's  expansion, which is accura te  enough f o r  

a domain covering the whole sub-sonic region a s  a sub-domain. 
bet ter  resul t  can immediately be obtained i f  the exact relation involv- 
ing X and G 2 ,  and a matching condition on vs = as a v  a r e  taken into 

consideration. 

report .  

.I, 

Then the velocity field is con- 

A 

This consideration has  not c a r r i e d  out in  the present  
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. VII. Appendix 

(A) Derivatives on the Body 

F o r  the sake of self-containing the derivatives (at the body) of 
the flow velocity components and the logarithmic p r e s s u r e  L = log - P 

Po up to  the second powers a r e  l isted below::: 

U 1 2 
C 2 2  

- 
u = - = u0(s) + u l ( s )  (r-1) + - u (s) (r-1) t . . . 

P 1 2 
PO 

L = log - = Lo ( s )  + L1 (s) (r- 1) + L2 (s) (r-1) + . . . 

t 

where uo(s)  = 0 

3 

1u 
U1 ( s )  = - 2 CY -+  CY - 1 6 p  4CY (1 -P) ) s2  

u2(s)  = 2 (3  CY-^)+ [ 648-4 (3 CY-IJ) t 
lJ 

12CY 5 (3 t 4p t 5 p  2 1 2 
2 t [ 966 - ~ l + p  1 9 2 ~ ~  p - 

I-1 I-1 

2 3 2 ( 5 t p  ) (5 t I-1) (1- P )  4CY41J -144p 
t I-1 Q P r ,  2 

I-( 

1 2 0  -- p t 3  12CY 2 2 1 1  s + .  2 . . 51.1-1 
- 1 ~ 3 ~ -  ___ 

I-1 r'-r I-( 

2 
v O ( s ) = 2 r W + 8 / 3 s t ( 3 2 6 - 8 p )  s t . .  . 

* Several mispr in ts  in Report I a r e  corrected.  
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2 2 
p2 + 646+- 1+11I.( 4 a  + - l + M  4 a 2 q ] s  t.. . 

I.( 2 + 8 p t 4 8 -  
cy 

II 

- l + P 2 c r  S f -  (2a2-16cy/3-4a 4 2  ) s  t .  . . Lo - - -  
I.( I-( 

2 2 4 2  
l + p  ( 8 p a - Q  + 4 a  ) s - l * I . ( 4 c y s + 4 -  L1 - __ 

+ 1 ( 4 c y 2 - 3 2 a P  + 8 a q +  8cr (1-3CL) ).s+ . 

+ .  . . 
2 4 

I.( I.( 

L2 - - - 4 a  ( '  
I-( I.( I.( 

F r o m  the fundamental equations, we have a l s o  the following re- 

la t i  on s : 

2 
Lo(s) =- +I-( log ( l -vo s (1-s) ) 

211 
L v s(1-s) 

Lis )=%! 
I-( 1-V0s(l-s) 

' vos ( l - s )+  v 2 s(1-s) 
2 [ U l  + u 1  0 

I.([ 1-vo s(l-s)]  

1 + P  L2(s) = - 

3 2  2 1+/J  1 
2 - 2 v  v s(1-s) 3 + 2VlVO s (1-s) - 

0 1  I-( 1-v s(1-s) 
0 

d 
d s  u1 where u l '  = ~ 

n I 
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(B) Shock Conditions 
Le t  the shock shape be given as: 

r = g ( s ) = g ,  [ 1 + G 1 s + C 2 s  2 + .  . . .] 

- - g O [ l + ( 2 + x ) s U ( 4 + z ) S  2 + .  . . . 3 

On the shock, 

G u  = -y+(2y-2x+2yx-x 2 2  +X" p ) s  

t [ -2(y-p) ( -22  t 9 x t 3 x E . o  

2 - (1-/J) ( 4 ~ - 1 8 ~  t 4 ~ 2 - 2 5 ~  

3 4  2 - 8x - x  > ]  s + .  . . . 

f i7 = - x  t y ( 2 +  x )  

2 2 3  + [  (y-U) ( 2 2 - l o x - 3 ~  ) + ( 1 - ~ ) ( - 2 ~  t ~ O X + ~ X  t x  )] S t .  . . 
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FIG.5 Sonic Line on a Sphere for Several Mach Numbers. 


